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Introduction

Problem Statement:
Given an image,machine will automatically answer questions posed by
humans in natural language query.

Training on a set of triplets (image, question, answer).

Answers can be single word or multiple word, depending on
dataset.
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Introduction

Type of Question

Fine-grained recognition (e.g.,“What kind of cheese is on the
pizza?”).

Object detection(e.g., “How many bikes are there?”).

Activity recognition (e.g., “Is this man crying?”).

Knowledge base reasoning(e.g., “Why did Katappa killed
Bahubali?”).

Commonsense reasoning (e.g., “Does this person have 20/20
vision?”, “Is this person expecting company?”)..
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Result of multiple questions for a single image

Figure : Result of the proposed algorithm on multiple questions for a single image
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Introduction

The critical challenge of this problem is that different questions
require different types and levels of understanding of an image to find
correct answers.

For example, to answer the question like “how is the weather?” we
need to perform classification on multiple choices related to weather,
while we should decide between yes and no for the question like “is
this picture taken during the day?”.

For this reason, not only the performance on a single recognition task
but also the capability to select a proper task is important to solve
ImageQA problem.
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Introduction

Simple deep learning based approaches that perform classification on
a combination of features extracted from image and question
currently demonstrate the state-of-the-art accuracy.

The existing approaches of VQA extract image features using a
convolutional neu- ral network (CNN), and use CNN or bag-of-words
to obtain feature descriptors from question.

These methods can be interpreted as the answer is given by the
co-occurrence of a particular combination of features extracted from
an image and a question.
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Introduction

Contrary to the existing approaches, Author defines a different
recognition task depending on a question.

In order to realize this idea, Author proposed a deep CNN with a
dynamic parameter layer whose weights are determined adaptively
based on questions.

This paper claims that a single deep CNN architecture can take care
of various tasks by allowing adaptive weight assignment in the
dynamic parameter layer
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Introduction

Main contributions in this work are summarized below:

successfully adopted a deep CNN with a dynamic parameter layer
for ImageQA, which is a fully-connected layer whose parameters
are determined dynamically based on a given question.

To predict a large number of weights in the dynamic parameter
layer, applyed hashing trick , which reduces the number of
parameters significantly with little impact on network capacity.

We fine-tune GRU pre-trained on a large-scale text corpus [14] to
improve generalization performance of our network.

This is the first work to report the results on all currently
available benchmark datasets such as DAQUAR,COCO-QA and
VQA.

Our algorithm achieves the state-of-the-art performance on all
the three datasets..
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A multi-world approach to QA by[Malinowski et al.,2014 ]
[6]

It employs semantic image segmentation and symbolic question
reasoning to solve ImageQA problem.
However, this method depends on a pre-defined set of
predicates,which makes it difficult to represent complex models
required to understand input images.
Deep learning based approaches demonstrate competitive
performances in ImageQA.

Figure : multi-world approach[Malinowski et al.,2014][6]
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Neural Image-QA[Malinowski et al.,2015][5]

Most of approaches based on deep learning, use CNNs to extract
features from image while they use different strategies to handle
question sentences.
Some algorithms employ embedding of joint features based on image
and ques- tion.
Neural Image-QA model based approch, the image representation
from CNN is fed to each hidden layers of LSTM.
In this model, the answers is short, such as one single word ,i.e the
object category, color, number, and so on.

Figure : Neural Image-QA(Malinowski et al.,2015)[5]
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VSE(VIS+LSTM) Model[Ren et al.,May,2015][4]

In VSE(visual semantic embedding) Model, image QA task is
formulated as a classification problem .
This model also contains a single LSTM and a CNN.
LSTM is employed to jointly model the image and question by
treating the image as an independent word, and appending it to the
question at the beginning or end.

Figure : VSE model- VIS LSTM(Ren et al.,May,2015)[4]
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mQA Model

The structure of mQA model is inspired by the m-RNN model [7] for the
image captioning and image-sentence retrieval tasks. Block diagram of
M-RNN as show in figure.
mQA adopts a deep CNN for computer vision and a RNN for language.
mQA model is extended to handle the input of question and image pairs,
and generate answers.

Figure : m RNN model(Mao et al.,2015)[7]
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mQA Model [Gao et al.,Nov, 2015][3]

It contains four components: a Long Short-Term Memory (LSTM) to
extract the question representation, a Convolutional Neural Network
(CNN) to extract the visual representation, an LSTM for storing the
linguistic context in an answer, and a fusing component to combine
the information from the first three components and generate the
answer.
Different from [4][5], the image representation does not feed into the
LSTM . Here, we use two separate LSTMs for questions and answers
respectively in consideration of the different properties (e.g.
grammar) of questions and answers.

Figure : mQA model(Gao et al.,Nov, 2015)[3]
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ConvQA Model [Ma et al.,Nov,2015] [2]

In this approach uses 3 CNN’s - one to extract sentence representation,
one for image representation, and the third is a multimodal layer to fuse
the two.

Figure : ConvQA(Ma et al.,Nov,2015)[2]
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Introduction

Figure : Overall architecture of the proposed Dynamic Parameter Prediction
network (DPPnet), which is composed of the classification network and the
parameter prediction network.

The weights in the dynamic parameter layer are mapped by a hashing
trick from the candidate weights obtained from the parameter
prediction network.
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Problem Formulation

ImageQA systems predict the best answer â given an image I and a
question q.

Conventional approaches

It is a joint feature vector based on two inputs I and q and solve a
classification problem for ImageQA giveb by following eq

Where ω is a set of all possible answers and θ is a vector for the
parameters in the network
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Problem Formulation

Proposed approaches

Here, Authur uses the question to predict weights in the classifier and
solve the problem.

where θs andθd(q) denote static and dynamic parameters, respectively.
Note that the values of θd(q) are determined by the question q
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Classification Network

The classification network is constructed based on VGG 16-layer net
which is pre-trained on ImageNet.

The last layer of Vgg net is removed and attached three
fully-connected layers.

The second last fully-connected layer is the dynamic parameter layer
whose weights are determined by the parameter prediction network,

The last fully-connected layer is the classification layer whose output
dimensionality is equal to the number of possible answers.

The probability for each answer is computed by applying a softmax
function to the output vector of the final layer.
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Classification Network

Dynamic parameter layer in the second last fully-connected layer
instead of the classification layer because it involves the smallest
number of parameters.

As the number of parameters in the classification layer increases in
proportion to the number of possible answers, which may not be a
good option to general ImageQA problems.
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Dynamic Parameter Layer

Classification network has a dynamic parameter layer. That is, for an
input vector of the dynamic parameter layer f i = [f i1 , ..., f

i
N ], its

output vector denoted by f o = [f o1 , ..., f
o
M ] is given

Where b denotes a bias and Wd(q)εRM∗N denotes the weight matrix
constructed dynamically using the parameter prediction network given
the input question q.
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Parameter Prediction Network(PPN)

The parameter prediction network is composed of GRU cells [Chung.
et al.,] followed by a fully-connected layer.

fc layer of PPN produces the candidate weights to be used for the
construction of weight matrix in the dynamic parameter layer within
the classification network.

fc layer of PPN produces the candidate weights to be used for the
construction of weight matrix in the dynamic parameter layer within
the classification network.
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Parameter Prediction Network(PPN)

Let w1, ..., wT be the words in a question q, where T is the number
of words in the question.

In each time step t, given the embedded vector xt for a word wt ,GRU
encoder updates its hidden ht at time t is given by

where rt and zt respectively denote the reset and update gates at
time t,h̄t is candidate activation at time t.

Note that the coefficient matrices related to GRU such as
Wr ,Wz ,Wh,Ur ,Uz , andUh are learned by our training algorithm.
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Parameter Hashing

The final hash function is given by

This function is useful to remove the bias of hashed inner product
[3(original ref)].

In our implementation of the hash function, we adopt an open-source
implementation of xxHash.
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Training by Error Back-Propagation

The proposed network is trained end-to-end to minimize the error
between the ground-truths and the estimated an- swers.

The error is back-propagated to both the classification network and
the parameter prediction network and jointly trained by a 1st order
optimization method.

Let L denote the loss function. The partial derivatives of L with
respect to the k th element in the input and output of the dynamic
parameter layer are given respectively by

The two derivatives have the following relation:
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Training by Error Back-Propagation

Likewise, the derivative with respect to the assigned weights in the
dynamic parameter layer is given by

A single output value of the PPN is shared by multiple connections in
the DPL.

To compute the derivative with respect to an element in the output
of the parameter prediction network(PPN) as follows
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VQA

MS-COCO

DAQUAR-all and DAQUAR reduced.
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Evaluation results on VQA
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Evaluation results on COCO-QA
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Evaluation results on DAQUAR
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Sentences before and after fine-tuning GRU

Figure : Retrieved sentences before and after fine-tuning GRU
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Sentences before and after fine-tuning GRU

Figure : Retrieved sentences before and after fine-tuning GRU
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Result of multiple questions for a single image

Figure : Result of the proposed algorithm on multiple questions for a single image
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Results of single common question for multiple images

Figure : Results of the proposed algorithm on a single common question for
multiple images
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Conclusion

The effectiveness of the proposed architecture is supported by
experimental results showing the state-of-the-art performances on
three different dataset.

Note that the proposed method achieved outstanding performance
even without more complex recognition processes such as referencing
objects.
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