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1. Objective 

The objective of this paper is to implement video stabilization based on particle filtering 

framework. To show the use of particle filters to track he projected affine motion of 

camera model. 

2. Introduction 

VIDEO CAMERAS mounted on handheld devices and mobile platforms have become 

increasingly popular in the consumer market over the past few years. The undesired 

camera motion and platform vibrations can be difficult to avoid when using handheld 

cameras, which will generate unstable video images. Video stabilization is, therefore, 

becoming an indispensable technique in advanced digital cameras and camcorders. Its 

impact increases rapidly with the rising popularity of handheld cameras and cameras 

mounted on moving platforms (e.g., cars).  

Camera motion estimation is an essential step toward video stabilization. Stabilization 

methods exploit the fact that camera motion causes the affine transform of the frames, 

which can be inverted to obtain stable frames. The first step of video stabilization is, 

therefore, to identify the global affine transformation. Additionally, the use of 

corresponding feature points in a particle filtering framework helps to obtain robust 

tracking of the camera motion. 

In this paper, we implement particle filters [1] to estimate the global camera motion 

between successive frames. We will adapt particle filters for video stabilization by using 

them to estimate the affine transformation model of the global camera motion from 

corresponding feature points. The particle filters can be used to provide a smooth 

estimate with low error variance, which is critical in video stabilization. The resulting 

motion estimation algorithm yields accurate and robust estimate of the affine transform 

model. 

3. Literature Survey 

In earlier efforts, 2-D models [2]-[3], 2-D affine models [4]-[6], 2.5-D model [7], and 3-D 

models [8]–[10] have been employed to represent the video stabilization problem. The 

2-D model parameters are uniform for each point in the scene, while, on the contrary, a 

3-D model has spatial variant parameters relating to depth information. 

A pure 2-D model, with a 2-D translation vector and one rotation angle, is not capable of 

describing the 3-D camera motion, which includes rotation out of the image plane and 

translation along the optical axis. A 3-D model is valuable in determining depth 



changes; however, it introduces tremendous complexity and challenges due to the loss 

of scenes’ depth information in the projected images. Though the 2.5-D model 

has a tempting feature of introducing partial depth information into the 2-D model, the 

algorithm is practically difficult to realize. The 2-D affine model with six parameters 

provides an attractive representation of the camera motion. It achieves a good balance 

between accuracy and computational cost for video stabilization purposes [4]. We had 

adopted a variation of the 2-D affine model for the camera motion representation. 

Critical to the success of video stabilization is global camera motion estimation. 

Methods used for global motion estimation can be classified mainly into two categories:  

(a) Intensity-based motion estimation. The image intensity-based motion estimation 

methods have an advantage of being inherently robust to outliers and 

illumination changes. 

(b) feature-based motion estimation. Popular features include edge patterns [11] 

and corners [9]. Feature-based motion estimation algorithms are, in general, 

more accurate but less robust, compared with intensity-based motion estimation 

methods. In this paper, the global motion estimation is based on image features 

by tracking scale-invariant feature transform (SIFT) points.  

Classical particle filtering theory allows particles to be sampled from any density 

function. Traditional implementations of particle filters generally rely only on the state 

transition information for sampling. However, it has recently been shown that much 

more effective sampling schemes can be attained by sampling from a proposal density 

which takes into account the observation data. This evolution in particle filters has had a 

profound impact on the development and popularity of various methods for object 

tracking in video sequences. In this paper, we extend the application of particle filters to 

tracking the 2-D affine transform parameters of the global camera motion alongwith 

feature-based importance density function. The proposed scheme can ensure that the 

algorithm works effectively and efficiently with a low computational cost. 

4. Theoretical Background 

Here, we will discuss theoretical issues of algorithm, including camera models and 

properties of particle filtering estimation. 

Camera Model. In video stabilization, the camera model can be derived 

as follows. Assume that there is one point ‘P’ in the scene whose coordinates in 

camera coordinate system at time t0 is [x0, y0, z0]T . In time t1, camera has been 

moved by a rotation and a translation, while the point P remains in the same position 

in world coordinates. The new coordinates at time t1 is [x1, y1, z1]T (also in camera 

coordinate system). These two vectors of coordinates can be related by the equation  

 

[x1 y1 z1]T = R3×3 ∗ [x0 y0 z0]T + T3×1    (1) 

 



where R3×3, T3×1 are the opposite transform of the camera’s 3-D rotation and 

translation, respectively. By projection, the image coordinates of P in time t0 and t1 

are given by  

[u0 v0 λ]T = (λ/z0)∗ [x0 y0 z0]T     (2) 

[u1 v1 λ]T = (λ/z1)∗ [x1 y1 z1]T    (3) 

 

where λ is the image plane-to-lens distance of the camera. A detailed description 

and illustration of above imaging model can be found in [13]. With (1), (2), (3) and by 

rewriting the rotation matrix R3×3 and translation vector T3×1 to show their entries, we 

can get 

 (4) 

 

The first two columns of (4) yield the following 2-D form 

 

       (5) 

Where, we define s = z0/z1, tx = s R13λ + (λ/z1)Tx and ty = s R23λ + (λ/z1)Ty. In 

general, the scaling factor s and translations tx, ty vary for objects with different 

depths. However, it is realistic to assume that in most real scenes the background 

(at which the stabilization algorithm aim) has small relative depth variation, 

compared to the distance between camera and the scene [4]. Thus, by assuming the 

uniformity of the scaling and translation, we can use this 2-Daffine transform to 

approximate the 3-D camera motion. The 2-D affine model is shown by experiments 

to be an accurate enough model for stabilization purposes. Moreover, the rotation 

matrix R3×3 is orthonormal, i.e., it is constrained by the following [14]  

              (6)  

                (7) 

      (8)  
 

Therefore, we get the relationship between the following four rotation parameters as 

  (9) 

Since R22 can be determined from (6) given R11, R12, and R21, the affine model (5) 

has six degrees of freedom, which is equivalent to the usual affine model [4]. 

However, the proposed model is valuable in explicitly expressing the actual physical 



meanings of the parameters. We can further obtain the depth change and three 

rotation angels from these parameters, which the usual affine model is not capable 

of doing. Our task in global motion estimation is to determine the six parameters s, 

R11, R12, R21, tx, and ty for every successive frame. Also, note that these parameters 

represent six kinds of motion which can take place independently. Therefore, it is 

reasonable to assume that these parameters are statistically independent of each 

other.  

Video Stabilization. In this section, we describe our complete system of video 

stabilization under the particle filter framework. We first introduce the importance 

density function based on SIFT [15] algorithm. We then describe the particle filter 

algorithm for global motion estimation.  

(a) Importance Density Using Scale-Invariant Features.  

The choice of a good importance density is a crucial step in the design of 

the particle filter. We would like to draw particles from an importance density 

that is close to true posterior to make the filtering algorithm more effective. 

We use feature tracking to get the mean vector for constructing the proposal 

density q(·). 

  xk =    (10) 

The feature points we use are obtained based on the SIFT algorithm [33]. 

SIFT extracts and connects feature points in images which are invariant to 

image scale, rotation, and changes in illumination. Moreover, it provides 

distinctive descriptors which enable us to find the correspondences between 

features in different images. Once we have corresponding pairs, we can use 

them to determine the transform matrix between two images. Equation (5) 

can be rewritten as 

   (11) 

where [uk−1, vk−1]
T and [uk, vk]

T are one pair of corresponding feature points. 

We need only three pairs to determine a unique solution. However, more 

matches can be added as shown. The over-determined system is in the 

form of Y = XA, which can be solved easily under least-square criteria by A 

= [XT X]−1 XT Y. We can further form the mean vector xk from matrix A. We 

then generate particles according to the importance density q(·) of a six-

dimensional Gaussian distribution. 

  (12) 



where qG(xk, ∑1) refers to the Gaussian function with mean xk and 

covariance matrix ∑1. ∑1 is selected by the system designer for efficient 

particle sampling in various situations. This proposal density helps to avoid 

generating useless particles and, hence, keep the computation cost low. In 

practice, we observe that SIFT sometimes provides incorrect corresponding 

feature points especially when the pictures are blurred due to rapid camera 

movements. In such cases, the resulting xk will be an estimate with large 

error variance. However, we can see later in the experiment that particle 

filtering is robust in the sense that it will save us from trapping in the wrong 

estimate by relying on weighted sum of samples. This result agrees with the 

smoothing property of particle filtering. 

 

(b) Particle Filtering for Global Motion Estimation Between 

Successive Frames. We employ here the bootstrap filtering proposed in 

[12] with slight modifications. At time k, we first generate xk
i from an 

importance density qG(xk,∑1). We then need to assign weights to these 

particles. The desired weights should perform as an evaluation on the 

“quality” of the particles. In our case, N particles suggest N proposals of the 

transformation matrix, so we can apply the N inverse transforms to frame k 

and get N candidate images Ai. Then we compare these images with k−1 

frame A0 to determine the similarity between them. The particle weights are 

hence decided according to the similarities, i.e., the higher the similarity, the 

larger the weight. We choose mean square error (MSE) and feature 

distance as two measures of similarity.  

 

(i)  MSE comparison calculates the difference of the gray-scale 

from pixel to pixel between two images and then computes the 

square and mean to get an MSE value Mi. The MSE likelihood is then 

given by  

  (13) 

(ii) The feature distance comparison employs the SIFT feature 

points extracted in calculating the importance density. As long as 

we have features in image Ai and A0, we can calculate the 

distances of all the corresponding feature points. Denote the 

average distance to be Di. The feature likelihood is given by 

    (14) 



where σM and σF are adjustable standard deviations which can be 

chosen experimentally. The normalized weight for particle xk
i is 

then given by 

            (15) 

Once we obtain the weight for each particle, we will approach the 

true state by a discrete weighted approximation: 

     (16) 

where the estimated state tells the estimated values of global 

affine motion parameters. Now assume that the first frame of the 

video sequence is stable, and denote it to be the reference frame. 

Then the accumulative scaling factor, accumulative rotation matrix 

Rk 
A, and translation displacement Tk

A with respect to the reference 

frame are given by 

   (17) 

(c) Algorithm. To summarize, the algorithm for each time step at 
time  k is given as follows. 
 

(i) Load two successive frames: frame k and frame k − 1. 

(ii) Extract and match SIFT feature points in the two images. 

(iii) Reject the features that might corresponds to moving 
objects by detecting the motion speed. 

(iv) Compute xk vector from SIFT feature matches. 

(v) Use particle filtering framework to estimate the global 
motion between frame k and frame k − 1: 

(aa) for i = 1 : N, generate particles from an Gaussian 
importance density. 
(ab) for i = 1 : N, calculate the normalized weight from 
the importance sampling. 
(ac) form the estimation using the weighted sum of 
samples. 

(vi) Calculate the accumulative motion. 
 
(vii) Reconstruct the stabilized image. 
 
 



5. Experimental Results 
 
(a) Step 1. Read Frames from a Movie File Here we read in the first two 
frames of a video sequence. We read them as intensity images since color is not 
necessary for the stabilization algorithm, and because using grayscale images 
improves speed. Below we show both frames side by side, and we produce a red-
cyan color composite to illustrate the pixel-wise difference between them.  

 

 

(b) Step 2. Collect Salient Points from Each Frame Our goal is to determine a 
transformation that will correct for the distortion between the two frames. As input we 
must provide this function with a set of point correspondences between the two 
frames. To generate these correspondences, we first collect points of interest from 
both frames, then select likely correspondences between them. In this step we 
produce these candidate points for each frame. To have the best chance that these 
points will have corresponding points in the other frame, we want points around 
salient image features such as corners. The detected points from both frames are 
shown in the figure below.  



 

(c)   Step 3. Select Correspondences Between Points Next we pick 
correspondences between the points derived above. For each point, we extract a 
Fast Retina Keypoint (FREAK) descriptor centered around it. Points in frame A and 
frame B are matched putatively. Point from frame B can correspond to multiple 
points in frame A. Match features which were found in the current and the previous 
frames. The image below shows the same color composite given above, but added 
are the points from frame A in red, and the points from frame B in green. Yellow 
lines are drawn between points to show the correspondences selected by the above 
procedure.  



 

(d) Step 4. Estimating Transform from Noisy Correspondences We can 
derive a robust estimate of the geometric transform between the two images using 
the M-estimator SAmple Consensus (MSAC) algorithm, which is a variant of the 
RANSAC algorithm. This function, when given a set of point correspondences, will 
search for the valid inlier correspondences. From these it will then derive the affine 
transform that makes the inliers from the first set of points match most closely with 
the inliers from the second set. Thus, even though the affine transform is limited to 
altering only the imaging plane, here that is sufficient to align the background planes 
of both images. Furthermore, if we assume that the background plane has not 
moved or changed significantly between frames, then this transform is actually 
capturing the camera motion. Therefore correcting for this will stabilize the video.  

 

(e) Step 5. Transform Approximation and Smoothing Now we will estimate the 
distortion between all frames  and  as affine transforms, . Thus the 
cumulative distortion of a frame  relative to the first frame will be the product of all 
the preceding inter-frame transforms. For numerical simplicity and stability, we 



choose to re-fit the matrix as a simpler scale-rotation-translation transform. This has 
only four free parameters compared to the full affine transform's six: one scale 
factor, one angle, and two translations. We show this conversion procedure below 
by fitting the above-obtained transform  with a scale-rotation-translation 
equivalent, . To show that the error of converting the transform is minimal, we 
re-project frame B with both transforms and show the two images below as a red-
cyan color composite.  

 

(f) Step 6. Run on the Full Video Now we apply the above steps to smooth a 
video sequence. The function cvexTformToSRT also converts a general affine 
transform into a scale-rotation-translation transform. At each step we calculate the 
transform  between the present frames. We fit this as an s-R-t transform, . 
Then we combine this the cumulative transform, , which describes all 
camera motion since the first frame. The last two frames of the smoothed video are 
shown in a Video Player as a red-cyan composite. 

 

matlab:edit(fullfile(matlabroot,'toolbox','vision','visiondemos','cvexTformToSRT.m'))


 
6. Discussion 

This paper has been to extend particle filtering to the estimation and tracking of the 
global camera motion parameters in video sequences. An efficient implementation of 
particle filters for global motion estimation has been proposed based on carefully 
designed importance sampling. We relied on corresponding SIFT points to obtain an 
estimation of the camera motion model. SIFT Interest point depends on threshold in 
SIFT detector. Also depend on the matching algorithm to remove outliers. We also 
proved practically that particle filtering can be used to reduce the variance of a time 
series estimate and thus yield a smooth and more accurate estimate when the number 
of particles is sufficiently large. 
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