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Fig. 2. Flow of frequency-domain BS$
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m frequency-domain BSS involves a permutation
problem:

m the permutation ambiguity of ICA in each frequency bin
should be aligned so that a separated signal in the
time-domain contains frequency components of the same
source signal.

!These are ref No of My cited paper
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m As a result, the TDoAs cannot be directly utilized in
solving the permutation problem for high frequencies.

m TDoA with the help of DUET [10] and binwise
clustering [11].
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Objective: find the principal components P of a data matrix A(n,m).

act 1. First zero mean the columns of A (iranslate the origin to the center of gravity).

Patro,Gokul
Krishnan & 2. Apply PCA or SVD to find the principle components (P) of A.

Phani Reddy

PCA:
I.  Calculate the covariance matrix C=
II. p = the eigenvectors of C.

A AT

literature
Survey

IMI. The variances in each new dimension is given by the eigenvalues.
SVD:

I. Calculate the SVD of A.

II. P=V: the right singular vectors.

II. The variances are given by the squaring the singular values.
3. Project the data onto the feature space. F=Px A
4. Optional: Reconstruct A’ from Y where A’ is the compressed version of A.
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Lee and Seung alternate updates to W and H'
using an ascent direction.

Observe: min ||A— WH | is linear least
squares for either W or H if the other is fixed.

Leading singular vectors of a nonnegative
matrix are nonnegative. (Perron-Frobenius
Theorem).

Immediately suggests a simple rank-1 NMF':

Compute [U £ V] = SVD(A)

W =Uy, H=X1;V{
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NMF (@Author)*!

matrix

1
2
3
4

3

|1, 5,v| = powermetho d(4) :
v=vectorofones
while not converged

- A
J4v]
po A
|47
o=l

end

ICredit Goes to Author
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2 [1,0,v] =powermethal(4)
3 W,=u, H =
4 A=d4-uos
Vs 5 forall 4, <0 set 4 .=0
factorization 6 end fOr

« Without step 5, this will simply compute the SVD
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NMF (Paatero and Tapper, 1994)

Given A € R.*" and a desired rank k << min(m,n),
find We R,/ and H c R.A*"st A~ WH.

@ minw=ox=0|lA— WH| g
@ NMF improves the approximation as k increases:
If rank__(A) > k,

min A— Wy1H < min A — WiH|F.
Werr D 10 kartierlle < 1on ol kHiklle,

W e . and H; € R, /%7
@ But SVD does better: if A = UZVT, then

|A — UkZk V[ ||F < min||A — WH||g, W € R,™* and H € R, K"
@ So Why NMF? for Nonnegative Data

NMF provides Better Interpretation of Lower Rank Approximation

Badri, Gokul and Phani DOA based SCM for BSS April 10, 2016 13 /29



Introduction literature Survey

Direction of
BETT  NMF ([12,14,15,16,17,20]) !
Biind Source m NMF have been proposed for separation of sound

Separation[1]

sources both with single and multichannel mixtures.
Badri

F‘atro.rGokul

Krishnan &

Phani Reddy

Matrix
factorization

!Credit Goes to Author
Badri, Gokul and Phani DOA based SCM for BSS April 10, 2016 14 /29




Introduction literature Survey

Direction of
Arrival Based

Spatial NMF ([12,14115716'17'20])*1

Covariance

Bl Sore m NMF have been proposed for separation of sound

Separation(l] sources both with single and multichannel mixtures.
Badri . .
BHE m In the NMF separation framework the spatial

Phani Reddy properties of the sources can be modeled using a
spatial covariance matrix (SCM) for each source at
each STFT frequency bin [18][22].

Matrix
factorization

!Credit Goes to Author
Badri, Gokul and Phani DOA based SCM for BSS April 10, 2016 14 /29




Introduction literature Survey

Direction of
Arrival Based

Spatial NMF ([12,14115716'17'20])*1

Covariance

Bl Sore m NMF have been proposed for separation of sound

Separation(l] sources both with single and multichannel mixtures.
Badri . .

BHE m In the NMF separation framework the spatial

Phani Reddy properties of the sources can be modeled using a

spatial covariance matrix (SCM) for each source at

each STFT frequency bin [18][22].

urvey m Such extensions are hereafter referred to as
foctorization complex-valued NMF (CNMF).

!Credit Goes to Author
Badri, Gokul and Phani DOA based SCM for BSS April 10, 2016 14 /29




Introduction literature Survey

Direction of
Arrival Based

Spatial NMF ([12,14115716'17'20])*1

Covariance

Model For
Blind Source
Separation[1]

m NMF have been proposed for separation of sound
sources both with single and multichannel mixtures.
Badri . .

Patro,Gokul m In the NMF separation framework the spatial

Phani Reddy properties of the sources can be modeled using a

spatial covariance matrix (SCM) for each source at

each STFT frequency bin [18][22].

urvey m Such extensions are hereafter referred to as
foctorization complex-valued NMF (CNMF).

m SCM denotes the mixing of the sources by magnitude
and phase differences between the recorded channels,
and is not dependent on the absolute phase of the
source signal.
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m Array capture consists of a mixture of sound sources
convolved with their spatial responses.

K
S (8) =D ) hooie (7) sk (£ = 7)

k=1 T
m Which can be approximated as,

K K
Xi = > hisik = > Yitk
k=1

k=1

where ,X; of the capture Xj = [X,'/l, RN XiIM]
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m Abs phase of signal transformed to phase difference
between microphone pair
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Spatial
Covariance
Model For
Blind Source
Separation[1]

. Time-difference of Arrival:

Patro,Gokul
K nan &
Phani Redd

k¥ (n - —kin
(ko) = (ﬂ P) _ : ®)

T,miky) = 7, (k) —7,, (k)

[Wio];. m — ﬂXI}(j2TFf,'T,,m(ku)), _f.; = (r -1 }F,‘/ﬁ{r (7)
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Proposed Method DoA Kernels

Time-difference of Arrival:

-
-
ncly /
dsin 6

Figure: Array geometry consisting of two microphones m and n as
seen from above, source azimuth angle given as 6.
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Krishnan &
Phani Reddy

Badri, Gokul and Phani

Proposed Method DoA Kernels

Superposition of DoA Kernels:

m source spatial image S = H x S

(o]
Hi. = Z Wiozkas tﬁ)

o=1

DOA based SCM for BSS

April 10, 2016

m DoA kernels for each look direction O and at each
frequency | is denoted by W,
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Proposed Method CNMF Model for SCM Observations

CNMF Model for SCM Observations:

k—1o0=1

Sitk = tikvie,  tiksvi 20,

Xau=Xj= g E WioZrotik Vit

k=10=1

K
= E Hirtirvr.
k=1

Badri, Gokul and Phani DOA based SCM for BSS April 10, 2016

X~ X;= E Hip 8 = E E WioZkoSitk-

9

(10)

(11

(12)
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CNMF Cost Function:

I L
=1 I=1
I L

i=1 =1

C'J.Uc.o = W:(Jzkof'tk'UkI+"‘ﬂku(XH_ E W.J_ozkuéikvkl)

Proposed Method CNMF Model Algo

oD IXa- Xilll}- 13)

K ©O
LW,Z,T,V)= Zz [ X — Z zwiuzkotik?-’k[“%- (14)

k=1o0=1

(15)
k.o
ZrotikUkt .
Tilko = — % @il = E Zrolik Ukt (16)
It
k.o
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Proposed Method CNMF Model Algo

Direction of
Arrival Based
Spatial
Covariance

Model For Algorithm Updates for the Non-negative Parameters:

Blind Source

Separation[1]
Patra,Gokul i tinvirtr(Ea Wi, )
atro,Goku P 1 \ (,’1)
Krishnan & ko ko E Y -
Phani Reddy i1 vk VR4l |
210 ZhoVkitr(Ey W)
t,;k — t-,k 1+ (22

Dt ZkoVkidil
E Zkol iktr( riww)

Vi — e |1+ . (23)
Ew Zrolin Tt

Ei = Xi-),, Wiozkoliku
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Proposed Method CNMF Model Algo

Direction of Algorithm Updates for the SCM Model Parameters:

Spatial
Covariance
Model For % a
Blind Source Wiu — wi:: E Zholik UkIT 1 + § zk(:tikTJHEil (24)
Separation[1] Ik 1k
Badri
Patro,Gokul
Krishnan &
Phani Reddy x 2 H 25
W,, = VDVH, 25
Wi, — |[Wi,|exp(iarg(Wi,)), (26)
W;
Wiy — —— (28)
| Wioll»
L »
- 241/2 A ket -
ar = ( E vIDY2, o — —, b — tipag
=1 g (30)

(8]

- . . Zhee -

b = (D 2t)? zko 7o ik tabe, 6D
o=—1 k
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Proposed Method CNMF Model Algo

Algorithm Implementation:

[

1) Initialize zy,.t;; and vy and with random values uniformly
distributed between zero and one.

2) Initialize ., according to (7) and apply scaling (28).
3) Recalculate magnitude model i; according to (16).
4) Update ¢, according to (22).1°

5) Recalculate magnitude model ; accomding to (16).
6) Update v,; according to (23).

7) Scale v; to unity 2-norm and compensate by rescaling t; as
specified in (30).

8) Recalculate magnitude model ¥ according to (16).
9) Update z;, according to (21).

10) Scale z,, to [*-norm and compensate by rescaling t; as
specified in (31).

11) Recalculate magnitude medel %;; according to (16).

12) Calculate IV, according to (24) and enforce it to be positive
semidefinite by (25).

13) Update ¥, according to (26) and apply scaling (28).

14) The algorithm is repeating steps 3-13 for a fixed amount of
iterations or until the parameter updates converge,

Badri, Gokul and Phani

DOA based SCM for BSS April 10, 2016
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Reconstruction and Clustering Direction of Weights Clustering

Direction of
Arrival Based
Spatial
Covariance
Model For
Blind Source
Separation[1]

Badri
Patro,Gokul

Krishnan & K mean.:
Phani Reddy

m Apply k-means clustering on the spatial weights z,,
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Reconstruction and Clustering Direction of Weights Clustering
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Spatial
Covariance
Model For
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Separation[1]

Badri
Patro,Gokul

Krishnan & K mean.:
Phani Reddy

m Apply k-means clustering on the spatial weights z,,

m No of cluster is equal to the number of sound sources
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Reconstruction and Clustering Direction of Weights Clustering

Source Reconstruction:

Sitg = E bokzrotinUhi-
ko

E borzrotixv
ko Ygkckolik Ukl
:;‘-i!q - xin'z =

ko VakZkolik Ukt

Badri, Gokul and Phani DOA based SCM for BSS April 10, 2016
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